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LGBTQ+STEM Day

Happy LGBTQ+STEM Day!
Today’s talk is a celebration of research
that | (GDM) mentored this summer: the hard work
was done by my students (S. Goldhaber-Gordon & L. Smith)
at the ICR in Santa Fe, July 2021
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What is a Gravitational Wave (GW)?

Transient Persistent

Modeled

Continuous

Unmodeled ~
Burst Stochastic

LA-UR-21-XXXXX
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Forward

Inspiration:

simulated data
convolutional neural net
(CNN)

to help find
continuous-wave (CW)
[as-yet unseen]
gravitational waves (GWSs)
believed to come from
neutron stars

in our galaxy

PAPERS

¢ Dreissgacker, Sharma, Messenger,
Zhao, Prix
Deep-learning continuous
gravitational waves,
Physical Review D, 100, 044009
(2019)

® Dreissigacker & Prix,
Deep-learning continuous
gravitational waves:
multiple detectors and
realistic noise,
Physical Review D, 102, 022005
(2020) LA-UR-21-xxxxx
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Forward

PHYSICAL REVIEW D 100, 044009 (2019)

PHYSICAL REVIEW D 102, 022005 (2020)

Deep-learning continuous gravitational waves

Chstogh Desisgace
"Max P Gravitational P 167 Hannover, Germany
“Leibniz Universitit Hannover, D-30167 Hannover, Germ
Bira I of Technologs and Scence. Pilani, Rajosshan 339031, nia
“SUPA. Scholof Phsicsaud Asronoms, Unversy of Gasow, Glasgow G12 800, Unied Kigaom
Laboratory of Optical Astronomy, National Astronomical Observato
s Tty o St Begms 10010 i
Universis of Chines Academ of Sieces Beng 100045, China
"Depariment of Astronomy, Beijing Normal Universiy, Beijing 100875, China

® (Received 6 May 2019; published 7 August 2019)

We present a first proof-of-principle study for using deep neural networks (DNNs) as a novel
e et f contaucus ravedone waes (CW) o ko spoing e s The
sensitivity of current wide-parameter-space CW scarches is limited by the available computing power,
ich makes el networks an ierstin sHerma {0 fvestgate, s hey are cxremely s nce
trained and have recently been shown to ival the sensitivity of matched filering for black-hole merger
signals [D. George and E. A. Huerta, Phys. Rev. D 97, 044039 2018 H. Gabbard, M. Williams, .

wl Sharma, "' Chris Messenger.’ Ruining Zhao,**” and Reinhard Prix'*
D-301

Deep-learning continuous gravitational waves:
Multiple detectors and realistic noise

Christoph Dreissigacker® and Reinhard Prix®
Max Planck Institute for Gravitational Physics (Albert-Einstein-Institute), D-30167 Hannover, Germany
and Leibniz Universitit Hannover, D-30167 Hannover, Germany

® (Received 11 May 2020; accepted 17 June 2020; published 6 July 2020)

The sensitivity of wide-parameter-space searches for continuous gravitational waves is limited by
computational cost. Recently it was shown that decp neural networks (DNN) can perform all-sky searches
directly on (single-detector) strain data [C. Dreissigacker ef al., Phys. Rev. D 100, 044009 (2019)],
potentially providing a low-computing-cost search method that could lead t0 a better overall sensitivity.
Here we expand on this swdy in two respects: (i) using (simulated) strin data from two detectors
and (i) training for directed (ic.. single sky-position) searches in addition to all-sky

Hayes, and C. Messenger, Phys. Rev. Lett. 120, 141103 (2018)]

fiterng search using the WEAVE pipeline [K. Wett, 5. Walsh, R. Prix, and M. A. Papa. Phys. Rev. D 97,
123016 (2018)]. As test benchmarks we consider two types of allsky searches over he frequency range
from 2010 1000 H: an “easy” search using T = 10° s of data, and a “harder” search using T = 10° .
“The detection probabilty . is measured on a signal population for which matched fillring achieves

90% in Gaussian noise. In the casiest test case (T = 10's at 20 Hz) the DNN achieves
~ 886, comesponding 10 a loss in sensitvity depth of ~5% versus coherent maiched fileing.
However, a higher requencies and fo longe observtion imes the DNN detetion  pons tecris,
until py~ 136% and a loss of ~66% in sensitvity depth in the hardes 000 Hi),
We stody he DN generizton iy by tening on signls of iferent :.\q..cm\, spindowns
and signal .
cach trained at a different frequency. would be able 10 cover the whole frequency range of the
search.

s

DOE 10.1103PhysRevD. 100044009

searches. For a data time span of T = 10 s, the all-sky two-detector DNN is about 7% less sensitive
(in amplitude ho) at low frequency (f =20 Hz), and about 51% less sensitive at high frequency
(f = 1000 Hz) compared to fully-coherent matched-filtering (using WEAVE). In the directed case
the sensitivity gap compared to matched-filtering ranges from about 7%-14% at f =20 Hz to about
37%-49% at f = 1500 Hz. Furthermore we assess the DNN's ability to generalize in signal frequency,
spin down and sky-position, and we test ts robustness to realistic data conditions, namely gaps in the data
and using real LIGO detector noise. We find that the DNN performance is not adversely affected by gaps in
the test data or by using a relatively undisturbed band of LIGO detector data instead of Gaussian noise.
However, when using a more disturbed LIGO band for the tests, the DNN's detection performance is
substantially degraded due to the increase in false alarms, as expected.

DOI: 10.1103/PhysRevD. 102.022005
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Introduction

These papers are neat!
Potentially-robust and fast way

to handle what’s been

a Petascale computing challenge!

Puzzle: loss of sensitivity at high frequency
(possibly because of Doppler effects?)

Could CNNs help us finally see CWs?
Let’s find out!

LA-UR-21-xxxxx
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How does a Continuous Wave (CW) look?

Phase modulation in long-duration GWs (simplified illustration)

— unmodulated data
= phase-modulated data

— unmodulated data
++ phase-modulated data

Amplitude [-]

60

Amplitude Spectral Density [Hz'/*]
@
3

0.2

0.4 0.6 0.8

Time [s]

Frequency [Hz]

Roemer/Doppler effect from orbit in time & Fourier domains

LA-UR-21-xxxxx
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Student work: simulating data

CW with 0.5 Noise CW with 0.5 Noise Spectrum

250

2
200

1
150

0
100

-1
50
-2 p

0.000 0.002 0.004 0.006 0.008 0.010 -0.4 -0.2 0.0 02 0.4
Time Frequency
No CW with 0.5 Noise No CW with 0.5 Noise Spectrum

15 25
Lo 20

05
15

0.0
10

-0.5
-10 A
0

0.000 0.002 0.004 0.006 0.008 0.010 -0.4 -0.2 0.0 02 0.4
Time Frequency

(UL) time-domain noise+signal, (UR) frequency-domain noise+signal
(LL) time-domain noise only, (LR) frequency-domain noise only
simulated increasing noise levels (lower SNR)

LA-UR-21-XXXXX
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Student work: neural net architecture

tf.keras.Sequential ([

.keras.layers.Dense( ‘relu'),
.keras.layers.Dense( ‘relu'),
.keras.layers.Dense( ‘relu'),
.keras.layers.Dense( SEeluY )y
.keras.layers.Dense( ‘relu),
.keras.layers.Dense( ‘relu’'),
.keras.layers.Dense(2)

Six dense layers: ‘convolutional’ may be misnomer,

but it trains! Layers sized to match time-series duration.

Final output: detection or not? LAUR 210000
10/13




Student work: neural net training

model.compile(
tf.keras.losses.SparseCategoricalCrossentropy ( )

'adam',
['accuracy'])
model.fit(np.abs(np.fft.fft(training_data)),| training_labels, )

test_loss, test_acc model.evaluate(np.abs(np.fft.fft(testing_data)), testing_labels
print('\nTest accuracy:', test_acc)

probability model tf.keras.Sequential([model, tf.keras.layers.Softmax()])
predictions probability model.predict(testing_data)

print(predictions[0])

print(np.argmax(predictions[0]))

print(testing_labels[0])

Training on FFT data offloads heavy lifting.

Students shared their code w/ Github (none mine; based on MNIST tutorial)

LA-UR-21-XXXXX

no prior ML experience — Jupyter notebooks written in 4 weeks
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Student work: training history in noisy data

Model Accuracy

1.0 { — 0.5 Noise Data 7
—— 1 Noise Data 7
—— 2 Noise Data B 4
0.9 1 — 3 Noise Data A /
—— Random Noise Data " g -
0.8
>
9
c
3
o
< 0.7
0.6
0.5
0 2 4 6 8 10 12 14
Epoch

Model trains on accuracy metric in few epochs, hours on laptop:
longer, more realistic data present way forward (papers used clusters)

LA-UR-21-XXXXX
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Conclusion

CNNs potentially a way to find CW gravitational waves
TensorFlow accessible to high-school students
Lots left to do,
implementing realistic phase modulation,
explore loss of sensitivity at high-frequency,
Proof-of-concept — ML on frequency (Fourier) domain
success!
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